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RECAP: HMM BASICS



Recap: MM and HMM

Markov model (MM)

— We directly observe a sequence of states, and the transition between states only depends on
the recent k states (k-th order MM).

— Usually, we deal with 1t order MM, where the transition only depends on the current state.

Hidden Markov model (HMM)

— We cannot directly observe a sequence of states, instead we observe a sequence of emissions
from the hidden states.

— State transition is Markovian.

— The problem is, the same observation can be emitted from two or more states. In other words,
distinguishing from which hidden state the observation was emitted is not straightforward!

Observation: ABAABBABABAAB Observation: HTHHTHTHTHTHT

asp = 0.7 Emission probs. Emission probs.
e,(H) = 0.5 es(H) = 0.7

A e,(T) = 0.5 X Qg =0.7 e (T) = 0.3
Aap = 0.3 C dpp = 0.4
A £ BQ agg = 0.4

Aup = 0.3 A

VlBA = 0.6 VaBA = 0.6

Markov model Hidden Markov model



Recap: Three questions in HMM

Evaluation
— What is a probability of generating an observed sequence x by HMM?
— Solution: Forward/Backward algorithm

Decoding
— Given an observed sequence x, what is the most probable hidden state path of HMM?

— Solution: Viterbi algorithm

Learning
— Given an observed sequence x, estimate model parameters of HMM.

— Solution: Baum-Welch algorithm



Recap: Viterbi algorithm for decoding

Given an observed sequence x, what is the most probable hidden state path of HMM?

Formally: Given an HMM model M, find the hidden state path m that maximizes the
probability of observing the observed sequence x.
argmax, Plx | Myyy, ]

Naive solution: Compute P[x| My, ] for all possible rt's.
— Since the number of possible i's increases exponentially, it is not feasible.

Better solution: Viterbi algorithm (Dynamic programming formulation)

— Optimal substructure

* The optimal path of the prefix of length j that ends with state i must contain one of the
optimal path of the prefix of length j — 1.

— Recurrence relation
V@, j) = ml.cax( V(k,j—1) X ag X e;(x))



Recap: Forward/Backward algorithm for evaluation

What is a probability of generating an observed sequence x by HMM?

Formally: Given an HMM model M, find the probability P[x | My,] of observing the
observed sequence x.

Naive solution: Law of total probability; Weighted sum of all possible P[0 | My, T]'s!

Plx | Myyum] = zp [x|Mymy, m]P[r]

Better solution: Forward/Backward algorlthm (Dynamic programming formulation)
— Optimal substructure

» The probability of generating an observed prefix of length j with final state as i can be
easily computed by utilizing the precomputed probabilities of the prefixes of length j — 1.

— Recurrence relation

F(i,j) = ZF(R»]' — 1) X ag; X e;j(x;)
%




Recap: Baum-Welch expectation-maximization algorithm for
learning

Given an observed sequence x, estimate model parameters of HMM.

Formally: Given an observed sequence(s) x and an HMM model, find emission
probabilities e and transition probabilities a that maximizes the likelihood L(e, a|x).

Before dealing with the complex Baum-Welch, let's consider an easy (but unreal) case
first — Imagine that hidden state(s) for x is known!

Then maximum likelihood estimation of e, (b) (i.e., probability of emitting a character b
from state k) becomes
Ey (b)

2y Ex (D)

ex(b) =

Thus, it becomes the relative count of the event of emitting b from state k!
Similarly, MLE of transition probability ay; is also a relative count:

— Ay
kl Xy Agr




Recap: Baum-Welch expectation-maximization algorithm for
learning (cont'd)

* Infact, we do not know the hidden state path.

* However, we can still compute the expected counts of emissions and transitions by
manipulating probabilities from forward/backward algorithm!

* First, the expected counts of transition from state k to [, Ay is:
2 F(k,Dage(xi11)B(LiT+ 1)
Kl P(x)

« Visually, F(k,i)ay;e;(x;31)B(l,i + 1) can be depicted as below:

Position

State

= BULi+1)

Among numerous possible state paths,
it computes a fraction of state paths that makes transition from state k to state [ between position i and i + 1.



Recap: Baum-Welch expectation-maximization algorithm for
learning (cont'd)

« Similarly, the expected counts of the emission of character b from state k, E;. (b) is:

Zi s.t.x;=b F(k; i)B(k» i)

Ey (D) = P(0)

« After computing the expected counts of Ay; and Ej (b), we can now utilize the
maximum-likelihood equations we derived by assuming the hidden state path is known.

— Ay
N Ay
E. (b
e (b) = k(D) ,
2y Ex(b")

* Every iteration of these E/M steps are proven to improve model likelihood.

— (1) E-step: Computing the expected counts of A,; and E (b)
— (2) M-step: Recompute model parameters a and e with maximum likelihood estimates

10
See https://archive.org/details/statisticalanalyQ0litt/page/n145/mode/2up for the proof of the correctness of EM.



https://archive.org/details/statisticalanaly00litt/page/n145/mode/2up

Position-specific scoring matrix
& profile hidden Markov model



Going beyond a pair

Pairwise alignment is a great algorithm to determine whether a pair of sequences are
evolutionarily related.

But it often doesn’t work well with distant, but still related sequences.

o O
O O For these two sequences, pairwise alignment may not
O O produce a good score, but they are still related!
© 0 ©
© .90
O Protein family
OO (Evolutionarily related proteins)
o ©O

Query protein sequence

12



How can we match distantly-related sequences?

* We don't want to miss those distant relatives — they may provide valuable information
for the function of our query protein.

 Why don’t we focus on the shared features of the protein family, so that evolutionarily
irrelevant discrepancies have less impact on the result?

HBA_HUMAN  AQVKGHGKKVADALTNAVAH
HBB_HUMAN P KVKAHGKKVLGAFSDGLAH
MYG_PHYCAT EDLKKHGVTVLTALGATILKK
GLB3. CHTP  APFETHANRIVGFFSKIIGE
GLB5_PETMA° ADVRWHAERIINAVNDAVAS
LGB2 LUPLU PELQAHAGKVFKLVYEAAIQ
GLB1_GLYDI PGVAALGAKVLAQIGVAVSH

Many H’s herel / X

High penalty should be imposed Relatively less conserved )
if our query doesn't have H here. Our query §hould be penalized much less
for not having Y here.

13
Example from Durbin et al.



Profile is a computational summary of a set of sequences

A computational summary of a set of sequences is called profile.
— Profile summarizes the evolutionary conservation of amino acids.

— In other words, it informs us the important positions of the query sequence that we should
focus our attention on.

Today, we will discuss two types of profiles.

1. Position-specific scoring matrix (PSSM)
2. Profile hidden Markov model (pHMM)

14



Position-specific scoring matrix (PSSM)

« Position-specific scoring matrix (PSSM) is a simple, but effective form of sequence profile
that can be derived from multiple sequence alignment.

— You can think of a PSSM as a position-specific version of substitution matrix tailored to the
given set of sequences.

*  We discuss two forms of PSSM: (1) PSSM with log-odds and (2) PSSM with weighted
scores.

Derivation of PSSM with log-odds (Probabilistic PSSM)

* For each position i (i.e., column i) of a length L alignment of Nseq sequences, we can
‘summarize’ the relative frequency of amino acid a as

f’ _ Nia
LA = Nego

* wheren; ;, denotes the observed frequency of amino acid a in column i.

* In short, f is a position-specific relative frequency matrix, where its element f; ; is a
position i-specific relative frequency of amino acid a.



Position-specific scoring matrix (PSSM) (cont'd)

« With all the f; ,’s, we can derive the probability of observing our query sequence x as:

L
Pecim = | [ fix
i=1

* Note that the notation of LHS represents this probability is computed under the assumption
that x has evolutionary relationship with the set of sequences.

— Let us denote this assumption as model M here.

 To convert this probability as a score, we should compute a probability of x given a random
model R, P(x|R) and compute the log-odds.

— R:x does not have evolutionary relationship with other sequences.

L
P(x|M) fix;
S(x) = log PGAIR) Z;log 2

fi,a

da

And thus, the values m; , = log=—= constitutes the PSSM m.

Q. Can you see any shortcomings of this model?
16



Position-specific scoring matrix (PSSM) (cont'd)
Gribskov, McLachlan & Eisenberg (1987)
Derivation of PSSM with weighted scores (Non-probabilistic PSSM)
* The most widely used form of PSSM

* Intuitive way to score a query sequence against a set of previously aligned sequences:
Average pairwise substitution scores

* Denoting PSSM as m, its element m; , is given as:

M= ) fip Xs(@,b),
b € AA
where AA denotes the set of 20 amino acids.

* Then, the score of the query sequence x is

L
E mi,xi
=1

Q. Why is the score above is equivalent to the average pairwise substitution scores?
Q. Why this formulation of PSSM is not probabilistic?
Q. By the way, what is a “probabilistic” scoring scheme?




PSSM with weighted scores: a worked example

* Let’s see how we can build a (non-probabilistic) PSSM from a set of aligned sequences

and compute a score of our query sequence against it.

Position
Query

HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLB5_PETMA
LGB2_LUPLU
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Let’s derive a score within PSSM when the query has amino acid W at this position, 3, with BLOSUM62 scoring matrix.

Forexample, mzy, = fa3y X s(W,V) + f3, X s(W,L) + f3p X s(W,F) = % X (—3) + % X (—2) + % X1=-=

15
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HBAHUMAN. A Q V K G H G K K V A D A L T N AV A H
HBB_.HUMAN P K V K A H G K K V L G A F S D G L A H
MYGPHYCA E D L K K H G V T V L T A L G A I L K K
GLBS.CHTP A P F E T H A N R I V G F F S K I I G E
GIB5PETMAL- A D V R W H A E R I I N A V N D A V A S
LlGe2_LluPlU P E L Q A H A G K V F K L VY E A A I Q
Gl GtYot p ¢ V A A L G A K V L A QI GV AV S H
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Derivationof PSSM 3y v v v v v v v v v v ¥ Y ¥ vV v v v ¥
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P 24 0.0 26 | -1.1 -16 | -2.1 -16 | -14 | -13 2.3 -2.7 14 | -1.7 | 3.0 | -1.7 -13 -1.7 | -23 -14 | -14
R | -13 -0.7 -2.7 1.6 -1.0 | -03 -16 | -03 24 30 | -23 -0.9 -1.1 -2.7 -1.3 09 | -1.7 | 24 | -1.0 03
E | -0.1 -1.1 -04 | -16 0.3 0.4 -2.3 -2.6 -04 | -1.1 -2.7 -1.0 1.0 -1.7 | -23 -1.0 1.1
V| -1 -1.1 24 | -1.7 | -11 -2.0 3.7 13 20 | -03 1.6 20 | -13 0.4 2.4 -06 | -24
F | -30 -19 | 09 | 26 | 26 | 29 | -07 0.4 -2.7 -0.7 1.4 -1.7 26 | -16 | 07 | 20 | -20
Q| -06 -1.0 | -03 -16 | -0.1 0.7 -2.3 -2.1 -0.7 -06 | 24 | -09 0.0 -1.7 | 20 | -1.0 1.1
15 L | -21 -1.7 20 | 27 | 20 | -19 13 2.0 -2.7 -0.3 1.7 24 | -23 -0.6 1.7 -1.3 -2.6
Mmygy = — = K| -0.7 -06 | -1.1 -1.6 0.9 3.3 -2.3 -2.1 -0.3 -1.1 24 | -10 0.1 -1.7 | 20 | 04 0.6
c| 19 -13 27 | 1.7 | 24 | 27 | -10 | 1.0 | -23 -09 | -13 20 | 24 | 07 | 09 | -11 -2.9
\f\ 0.0 -19 | -11 -0.7 | -0.1 -0.3 -0.9 -0.1 -06 | -10 0.1 -06 | 06 | 04 | -04 | -1.1
D -19 | 114 | 14 | 07 | 13 -3.0 - 0.1 -2.1 - -0.7 13 -2.1 - -16 | 03
Y -1.6 1.6 26 ([ 20 | 20 | -10 | 06 | 24 | 10 0.1 -1.0 | -21 -1.9 | -1.1 -20 | -0.1
S 0.1 -1.1 0.4 0.0 -0.1 20 | -16 0.4 0.0 -2.0 1.1 0.0 0.0 -1.6 0.7 0.1
G 0.0 -2.3 3.4 -04 | -20 _ 1.0 -1.3 - 1.0 -1.3 -0.3 -3.0 0.0 -1.7
w -0.7 20 | 24 | 30 | 29 | 30 | 20 | 29 | -21 -16 | -20 - 29 | 27 | 29 | -24
N -1.4 0.4 -0.9 0.1 0.0 3.0 | -29 0.7 -20 | 30 0.9 0.4 20 [ 29 | -11 0.6
M -13 -14 | -21 -1.3 -1.0 1.0 1.0 20 | 03 1.0 -1.7 -16 | -0.7 1.0 -1.0 | -14
A 1.1 -1.9 1.7 -0.1 -09 | -03 -0.3 -0.1 1.7 -1.0 | 03 -0.6 2.0 0.1 1.6 -1.1
I . 20 | -23 2.7 | 20 | 27 33 1.7 -2.7 -0.7 2.0 24 | -19 0.0 23 -1.1 -2.9
H | -17 -1.0 | 2.7 -0.7 =19 20 | -11 -0.9 | 3.0 | -26 13 -1.7 24 | 0.7 -1.0 | -23 29 | -1.9 3.1

Note the high score of H here!




PSSM with weighted scores: a worked example (cont'd)

* Scoring query sequence
- In reality, scoring is done in a sliding-window manner and the best hit is reported.

oy e 9 1 2
Positon 1 2 3 8 9 0 1 2 3 4 5 6 7 8 9 ©
Query p Q W K K VL DATLYNA AV A H

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

-1.6 -2.1 -1.6 -1.4 -1.3 -2.3 -2.7 -1.4 -1.7 -3.0 -1.7 -1.3 -1.7 -2.3 -1.4 -1.4
-1.0 -0.3 -1.6 -0.3 24 -3.0 -2.3 -0.9 -1.1 -2.7 -1.3 -0.9 -1.7 24 | 1.0 0.3
-1.1 04 | -16 0.3 04 -2.3 -2.6 -04 -1.1 -2.7 -1.0 1.0 -1.7 -2.3 -1.0 1.1

-1.1 24 | 17 -1.1 -2.0 3.7 1.3 -2.0 -0.3 1.6 -2.0 -1.3 0.4 2.4 -0.6 -2.4
-1.9 -0.9 -2.6 -2.6 -2.9 -0.7 0.4 -2.7 -0.7 14 -1.7 -2.6 -1.6 -0.7 -2.0 -2.0
-1.0 -0.3 -1.6 -0.1 0.7 -2.3 -2.1 -0.7 -0.6 -2.4 -0.9 0.0 -1.7 -2.0 -1.0 1.1

-1.7 -2.0 -2.7 -2.0 -1.9 1.3 2.0 -2.7 -0.3 1.7 24 | -23 -0.6 1.7 -1.3 -2.6
-0.6 -1.1 -1.6 0.9 3.3 -2.3 -2.1 -0.3 -1.1 -24 -1.0 0.1 -1.7 -2.0 -0.4 0.6
-1.3 -2.7 -1.7 24 | 27 -1.0 -1.0 -2.3 -0.9 -1.3 -2.0 24 | 07 -0.9 -1.1 -2.9
0.0 -1.9 -1.1 -0.7 -0.1 -0.3 -0.9 -0.1 -0.6 -1.0 0.1 -0.6 -0.6 -04 | 04 -1.1
-1.9 -14 | 14 | 07 -1.3 -3.0 0.1 -2.1 -0.7 1.3 -2.1 - -1.6 -0.3
-1.6 1.6 -2.6 -2.0 -2.0 -1.0 -0.6 -2.4 -1.0 0.1 -1.0 -2.1 -1.9 -1.1 -2.0 -0.1
0.0 -0.1 -2.0 0.0 0.1 -1.1 0.4 0.0 -0.1 -2.0 -1.6 04 0.0 -2.0 1.1 0.0 0.0 -1.6 0.7 0.1

-1.1 -0.6 -1.7 0.0 -2.3 3.4 -0.4 -2.0 _I -1.3 1.0 -1.3 -0.3 -3.0 0.0 -1.7
-2.1 -2.9 -0.7 -2.0 24 | 30 | 29 | 30 -2.0 -2.9 -2.1 -1.6 -2.0 -2.9 -2.7 =29 | -24
-1.7 0.0 -3.0 -0.3 -14 0.4 -0.9 0.1 0.0 -3.0 | -29 0.7 -2.0 -3.0 0.9 0.4 -2.0 -2.9 -1.1 0.6
-1.6 -2.0 1.1 -1.0 -1.3 -14 | -21 -1.3 -1.0 1.0 1.0 -2.0 -0.3 1.0 -1.7 -1.6 -0.7 1.0 -1.0 -1.4
1.1 -1.1 -0.6 -0.3 1.1 -1.9 1.7 -0.1 -0.9 -0.3 -0.3 -0.1 1.7 -1.0 -0.3 -0.6 2.0 0.1 1.6 -1.1

-2.1 23 -2.7 -2.0 -2.3 -2.7 -2.0 -2.7 3.3 1.7 -2.7 -0.7 20 24 | -19 0.0 23 -1.1 -2.9
-1.7 -1.0 -2.7 -0.7 -1.9 6.4 -2.0 -1.1 -0.9 -30 | -26 -1.3 -1.7 -2.4 -0.7 -1.0 -2.3 -2.9 -1.9 3.1

I — > T Z=S0wn<0O44ANXxrpOpn<m=>DT

— Summing up those values gives a score of 34.714 0



Application: PSI-BLAST

» Position-specific iterated BLAST (PSI-BLAST) exploits PSSM to be more sensitive to
distantly-related sequences.

PSI-BLAST procedure

e @ Protein family
o (Evolutionarily related proteins)

Compute PSSM with initial top K BLAST hit
& Run PSSM-based search (scoring) .

Additional hits from
PSSM-based search

Query protein sequence

Repeat computing PSSM with top K hits
& PSSM-based search

(Typically, 1-2 iterations provide sufficient sensitivity)

BLAST: Basic Local Alignment Search Tool -



HMM as a profile

As you may have learned in the last lecture, HMM is one of the most powerful models for
sequence modeling.

We can even extend HMM to model shared features of a set of sequences.
— In other words, we can build an HMM that best summarizes the given set of sequences.

Profile HMM (pHMM)

Meanwhile, HMM needs (1) a set of hidden states, (2) transition probabilities and (3)
emission probabilities and pHMM also needs them.

First of all, what is the hidden states of pHMM?



Hidden states of pHMM

* Although the main goal of pHMM is not for generating sequences, it is easy to
understand pHMM model building procedure when we think from a generative point of
view.

— Just for a few slides, think pHMM as a generator of ‘likely’ sequences that resembles a family of
sequences that we are interested in.

— Specifically, we want a travel along the states (i.e., a complete iteration of state
transition+emission from start 2 end) of pHMM generates a single sequence!

* Imagine that we are now naively aligning a query sequence against a reference
alignment. What are the options for the next character?

»
»

o
c
®

<
~

Reference alignment
>O XxmMmAXR X
>Dr>EZHARAO O
r I T 1 I

O I>>>>0OOO
>>omz2< X
AARNAZD 1 -



Hidden states of pHMM

1. Match

- If the next character in the query matches well with the reference alignment, we can simply write
the character and go ahead.

Query K G H

r I T ' I T
O X rr>OoOon
>omz=z2< X
AARNZT 1

Reference alignment
>O XxmMm A AN
> >= 4 X O

24



Hidden states of pHMM

2. Insertion

- If the next character in the query is not likely to be derived from the next column of reference
alignment, one of the options is to treat the character as an insertion relative to the ref. alignment.

Query K G W

Reference alignment

>O X mMmAXRX

> > = 4" O
oo

r I T i I I

() I ~ T ~ T - ) W

>om=z2< X

25



Hidden states of pHMM

3. Deletion

- If the next character in the query is not likely to be derived from the next column of reference
alignment, one of the options is to think that the next character had been deleted in the query.

Query K G -

m—r I I 1+ I T
O >>>>OO
>Domz< RN
A A X -

Reference alignment
>O XxmMm A AN
> >= 4 X O

26



Hidden states of pHMM

* Features
1. Match state v Each match state M; emits a character

match-to-match transition:
the next character matches well
with the consensus profile

/

My —— My ———M;y,

M;_» Miyz ———— M43

27



Hidden states of pHMM

* Features
v Each insertion state I; emits a character
v’ Self-transition exists

2. Insertion state
v" But no transition between [; and [;, ; exists

match-to-insertion transition:
The next character is not likely to be from a consensus profile

My, —™M;y —— M; Miyg —— My, —— M3
Il—2 Il—l l+1 l+2

O O Q O O

T

self-transition
allows insertion gaps with two or more characters 28



Hidden states of pHMM

* Features
v Each deletion state D; does not emit any character
v' We call it'silent state’

3. Deletion state

Di_, *Di—4 > Dy *Diyq > Dy > Diy3
Mzﬁl‘@l?% M4 Mo M3
) i1 I; liy1 liyo

o O O 0O O

Q. pHMM can be still be implemented without deletion state. How can it be possible?
If so, what is the benefit of considering separate deletion states?



A complete pHMM structure

BVaiuiuiive

Q Q Q Q



A travel along pHMM produces a sequence

Example 1

- K G H G
K K H G
Sequences E T - A

used to build <
SHMM R W H A
Q A H A
_ A A L G

Bu|Id pHMM (Next slide)

*MW%

;oooo

v v \/ \/
Seq emitted K A H G

Example 2
K G H G
K K H G
E T - A
R W H A
Q A H A
A A L G

BUI|d pHMM (Next slide)

/\/

oq)ooo
b

v VY v v
K T A H

31



Three questions in pHMM — revisited

Evaluation

— What is a probability of generating an observed sequence x by pHMM?
— Forward / Backward algorithm

Decoding

— Given an observed sequence x, what is the most probable hidden state path of pHMM?
— Viterbi algorithm

Learning
— Given a set of sequence §, estimate model parameters of pHMM.
— Two scenarios:
* Learning from aligned sequences : Maximum likelihood estimation
* Learning from unaligned sequences : Baum-Welch algorithm

32



Three questions in pHMM — revisited

Evaluation «

— What is a probability of generating an observed sequence x by pHMM?
— Forward / Backward algorithm — 2

Secondly, we will discuss
how pHMM can be

used for evaluation

— Given an observed sequence x, what is the most probable hidden state path of pHMM?

— Viterbi algorithm

Decoding <«

Learning

— Given a set of sequence §, estimate model parameters of pHMM.
— Two scenarios:

We will discuss this first!
* Learning from aligned sequences : Maximum likelihood estimation «—— 1

* Learning from unaligned sequences : Baum-Welch algorithm «—— 3
Finally, we will briefly
discuss how the pHMM
parameters can be
estimated from
unaligned sequences

33



(Learning) pHMM parameter estimation from
multiple sequence alignments

The parameters of pHMM includes:
— Transition probability ay; : probability of the transition from state k to [
— Emission probability e, (a) : probability of emitting character a from state k

How can we estimate the values of those parameters?

Recall how we estimated the parameter of HMM.

— |If we know the hidden state path of the sequence, it is straightforward: Maximum likelihood
estimation of parameters

— Tip: You can think of maximum likelihood estimation = event counting

Now, let's come back to pHMM. How can we know the hidden state path of the
sequence?

— We can derive it from the multiple sequence alignment!

34



Determining hidden states
from multiple sequence alignment

« Labelling each column of multiple sequence alignment as one of match (M) or insertion
(I) is often done heuristically.

— No more than a half gap characters in‘match’state.

Obvious match state

Obvious insertion statf \
A Q VK G H G K K V A DAL T NA AV A H
P -V K - H GG K K VL G A - - DG L A H
E - L K - H GV T VvV L T A L G A - L K K
AP F E - HANIR -V - F - - K I I G E
A -V R - HAERITI - - - NDA AV A -
P - L Q - H A G K V F - L VY E A A I Q
P - VA - L G A K V L A Q - GV AV S H

States M I M

=
—
=
=
=
=
=
=
=
=
—
=
=
=
=
=
=

35



Determining hidden states

from multiple sequence alignment (cont'd)

* Once column-level hidden states are determined, we can determine the hidden state
path for each sequence in the alignment.

— Match (M), Insertion (I}, Deletion (D)

Column-level

caes M I MM I MMMMMMMM M MM MMM

S5eq A Q V K G H G K K V A D A T N A V A H

Statepathfr M I M M I M M M M M M M M M MM MMM
Seq 1

Seg2 P - V K - H G K K V L G A - D G L A H

Statepathifr M - M M - M M M M M M M M D MMM M M
Seq 2

Seq3 E - L K - H G V T V L T A G A - L K K

Statepathfor M - M M - M M M M M M M M M M D MMM
Seq 3

Andsoon...
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pHMM parameter estimation from
multiple sequence alignments

Given hidden state paths, it is straightforward to estimate transition and emission
probabilities.

— Again, counting!

— Note that you may need pseudocounts to overcome the lack of the data.

# transitions from state k to state [ “

Apy

a = —
TN A
# total transitions starting from state k

# emissions of character a from state k \
e, (a) = Ey(a)
K —
NCON

# total emissions from state k
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(Decoding) Viterbi decoding

What is the most probable hidden state path of observed sequence x in pHMM?
— This is equivalent to “What is the best-scoring alignment between x and the profile?”. Why?

Since we have three different types of states, Viterbi DP recurrence relation needs three
separate tables for each state type: V" (i), V/' (i), V;° (i)

Given the tables, recurrence relations are:

M .
eM'(Xi) I/] ( - 1) + log an_le
. j
VM (i) = log - +max{ Vi (i— 1)+ logay;_,m;
l V] 1(l_1)+logaDJ M
VM(@Gi—1)+logay.;.
V(i) = log———+maxJ{ V; (i— 1) +logay,,

x.
We can assume _ l V-D i—1)+loga
this term as 0, why? i ( ) 9apiji;

1(0) +logay;_,p; 01 —»Dz —>D; —>D4

/s
VP (i) = max /0 +loga;;_;p;
roswens Y \ / \ .




(Evaluation) Forward algorithm

« What is a probability of generating an observed sequence x by pHMM?
»  Similarly, we consider three separate tables for memoization: F* (i), Fi (i), F° (i)

* @Given the tables, recurrence relations are:

F (@
en; (%)
Ax;
+ log[an_leexp(P}lfl(i — 1) +a;,_,m;exp (Fjl—1(i - 1)) + aDj_leexp(FjD_l(i — 1))]

= log

Fi (D)

elj (xl)
= log

+ log[an,j exp (FjM(i — 1)) + a1, exp (Fjl(i — 1)) +ap,; exp (FjD (i — 1))]

Xi

F}D (l) — log[an_le eXp (F']Afl(l)) + alj_le eXp (F_']I—l(l)) + aDj_leeXp(F_'ilzl(i))]
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(Learning) pHMM parameter estimation from
unaligned sequences

When the given set of sequences are not aligned, we cannot know hidden state paths.
Use Baum-Welch Expectation-Maximization learning!

E-step: Compute expected counts of transitions and emissions.
M-step: Maximum likelihood estimation of a;; and e; (a)
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Any questions?



